Positive maps from irreducibly covariant operators
نویسندگان
چکیده
منابع مشابه
Deforming Maps for Lie Group Covariant Creation & Annihilation Operators
Any deformation of a Weyl or Clifford algebra A can be realized through a ‘deforming map’, i.e. a formal change of generators in A. This is true in particular if A is covariant under a Lie algebra g and its deformation is induced by some triangular deformation Uhg of the Hopf algebra Ug . We propose a systematic method to construct all the corresponding deforming maps, together with the corresp...
متن کاملCovariant Completely Positive Linear Maps between Locally C-algebras
We prove a covariant version of the KSGNS (Kasparov, Stinespring, Gel’fand,Naimark,Segal) construction for completely positive linear maps between locally C-algebras. As an application of this construction, we show that a covariant completely positive linear map ρ from a locally C-algebra A to another locally C -algebra B with respect to a locally C-dynamical system (G,A,α) extends to a complet...
متن کاملMaps preserving general means of positive operators
Under some mild conditions, the general form of bijective transformations of the set of all positive linear operators on a Hilbert space which preserve a symmetric mean in the sense of Kubo-Ando theory is described.
متن کاملCompletely Positive Maps Induced by Composition Operators
We consider the completely positive map on the Toeplitz operator system given by conjugation by a composition operator; that is, we analyze operators of the form C∗ φTfCφ We prove that every such operator is weakly asymptotically Toeplitz, and compute its asymptotic symbol in terms of the Aleksandrov-Clark measures for φ. When φ is an inner function, this operator is Toeplitz, and we show under...
متن کاملMaps on positive operators preserving Lebesgue decompositions
Let H be a complex Hilbert space. Denote by B(H)+ the set of all positive bounded linear operators on H. A bijective map φ : B(H)+ → B(H)+ is said to preserve Lebesgue decompositions in both directions if for any quadruple A,B,C,D of positive operators, B = C +D is an A-Lebesgue decomposition of B if and only if φ(B) = φ(C)+φ(D) is a φ(A)-Lebesgue decomposition of φ(B). It is proved that every ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical
سال: 2020
ISSN: 1751-8113,1751-8121
DOI: 10.1088/1751-8121/abaa04